**Now Accepting Applications for Pilot Research Project Grants--Read More**

Welcome to our Center!

Our P30 Center at the University of Illinois' Beckman Institute, has been funded by the National Institute on Drug Abuse since 2005 and was renewed for another five years until 2024. We provide proteomics, metabolomics, and bioinformatics technologies to biological collaborators at the University of Illinois Urbana-Champaign, and to members of the neuroscience community at other institutions in the United States and throughout the world. Our Center is built around the overarching theme of cell-cell signaling to advance state-of-the-art proteomics / metabolomics technologies focused on the study of addiction mechanisms in the central nervous system.

Why focus on cell-cell signaling? Intercellular signaling plays a crucial role in the organization and coordination of biological systems. A surprisingly large number of physicochemically and structurally distinct molecules are involved in communication among the cells of the brain, with more being discovered each year. These molecules range in size from the small nitric oxide molecule to large >100 kDa heavily post-translationally modified proteins. In addition, these are the endogenous molecules many of the drugs of abuse mimic in terms of receptor binding and other functions. Therefore, these molecules are particularly relevant in drug abuse research and present high-value targets for pharmacological intervention.

Center Structure

Scientific Research Cores

Services are provided to support our collaborators' projects via three synergistic scientific research cores: Sampling & Separation, Molecular Profiling & Characterization, and Bioinformatics, Data Analytics & Predictive Modeling. The services offered by the Neuroproteomics and Neurometabolomics Center on Cell-Cell Signaling are focused on several overarching goals:

  • Providing metabolomics / peptidomics / proteomics measurement capabilities and bioinformatics services to the Illinois, national and international neuroscience communities working on both fundamental neuroscience research and the study of drug addiction mechanisms.

  • Discovering the functional roles of metabolites, peptides and proteins in cell-cell signaling, memory, behavior and addiction.

  • Creating improved MS-based molecular characterization technologies to enable new investigations of cell-cell signaling.

  • Integrating proteomic and transcriptomic information in support of more accurate molecular identification and molecular network inference using systems biology approaches.

Pilot Research Project Core

In 2019 we added a Pilot Research Project Core to support promising young investigators new to addiction research, and also established researchers interested in exploring new directions in substance abuse research. Are you interested in applying for a pilot research project grant? Read more.

Administrative Core

The Administrative Core offers the support necessary to promote and maintain innovative scientific interactions while facilitating interactions among the three individual research cores and Center collaborators. Are you an established researcher who is interesting in collaborating with us? Read more.

**Center News**

The Analytical Scientist Power List 2021:The 100 most influential people in the analytical sciences. Jonathan Sweedler, Project Director, voted #1; Neil Kelleher, co-PI, voted in Top 20

Research News: "New Analytical Technique Helps Researchers Spot Subtle Differences in Subcellular Chemistry"

Research News: "Computational Method Provides Faster High-Resolution Mass Spectrometry Imaging"

The Analytical Scientist Power List 2019: The 100 most influential people in the analytical sciences. Jonathan Sweedler, Project Director, voted #1; Neil Kelleher, co-PI, voted #12

ACSaxial: "Neuroproteomics and Neurometabolomics Center on Cell-Cell Signaling Receives $6 million Grant to Continue Addiction Studies"

Beckman Institute News: "$6M Grant Renews Center That Seeks to Understand the Science of Drug Abuse"

Beckman Institute News: "Research Seeks to Identify the Molecular Pathways Underlying Opioid-induced Hyperalgesia"

Featured Collaborator

Leslie Sombers is an Associate Professor of Analytical Chemistry and University Faculty Scholar at North Carolina State University. Her area of interest and expertise is in development, characterization, and application of electroanalytical techniques to study real-time neurochemical fluctuations in biological systems ranging from single cells in culture to the brain of an awake, behaving animal.

Dr. Sombers works with us on evaluating opioid peptide secretion in the striatum and the ventral tegmental area in response to electrical stimulation and correlation of secreted peptide profiles to the strength of an electrical stimulus. Using fast-scan cyclic voltammetry and carbon-fiber microelectrodes to stimulate and monitor select peptide secretion from brain slices, she then relies on our unique small-scale solid phase extraction sampling of cerebro-spinal fluid in the vicinity of the brain slice to collect peptides for follow-up peptidomic analysis using our mass spectrometry methods. This integrative, multi-modal analytical approach validates electrochemically detected peptides and reveals potential unexpected peptides not picked up by electrochemical detection. Dr. Sombers' study is a critical step toward elucidating how the release and clearance dynamics of several neuropeptides and small molecules underlie discrete aspects of motivated behavior. It will enable direct quantification of endogenous opioid peptides in live brain tissue to clarify outstanding questions regarding the fundamental nature of endogenous opioid peptide signaling and help establish the precise role that these molecules play in devastating substance abuse disorders.

Featured Articles

Image-Guided MALDI Mass Spectrometry for High-throughput Single-Organelle Characterization, D.C. Castro, Y.R. Xie, S.S. Rubakhin, E.V. Romanova, J.V. Sweedler, Nat. Methods 18, 2021, 1233–1238.

Featured in several online articles, including:

Accelerating Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry Imaging Using a Subspace Approach, Y.R. Xie, D.C. Castro, F. Lam, J.V. Sweedler, J. Am. Soc. Mass Spectrom. 31, 2020, 2338–2347.

Featured in several online articles, including: